Timezone: »
We investigate a family of inference problems on Markov models, where many sample paths are drawn from a Markov chain and partial information is revealed to an observer who attempts to reconstruct the sample paths. We present algorithms and hardness results for several variants of this problem which arise by revealing different information to the observer and imposing different requirements for the reconstruction of sample paths. Our algorithms are analogous to the classical Viterbi algorithm for Hidden Markov Models, which finds single most probable sample path given a sequence of observations. Our work is motivated by an important application in ecology: inferring bird migration paths from a large database of observations.
Author Information
Daniel Sheldon (University of Massachusetts Amherst)
M.A. Saleh Elmohamed (Cornell University)
Dexter Kozen (Cornell University)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Collective Inference on Markov Models for Modeling Bird Migration »
Tue. Dec 4th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2022 Spotlight: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2022 Poster: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2021 Poster: Relaxed Marginal Consistency for Differentially Private Query Answering »
Ryan McKenna · Siddhant Pradhan · Daniel Sheldon · Gerome Miklau -
2020 Poster: Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization »
Abhinav Agrawal · Daniel Sheldon · Justin Domke -
2020 Poster: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2020 Spotlight: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2019 Poster: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Spotlight: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Poster: Differentially Private Bayesian Linear Regression »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Differentially Private Bayesian Inference for Exponential Families »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Importance Weighting and Variational Inference »
Justin Domke · Daniel Sheldon -
2018 Poster: Inferring Latent Velocities from Weather Radar Data using Gaussian Processes »
Rico Angell · Daniel Sheldon -
2016 Poster: Probabilistic Inference with Generating Functions for Poisson Latent Variable Models »
Kevin Winner · Daniel Sheldon -
2014 Poster: Stochastic Network Design in Bidirected Trees »
Xiaojian Wu · Daniel Sheldon · Shlomo Zilberstein -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich