Timezone: »
In many structured prediction problems, the highest-scoring labeling is hard to compute exactly, leading to the use of approximate inference methods. However, when inference is used in a learning algorithm, a good approximation of the score may not be sufficient. We show in particular that learning can fail even with an approximate inference method with rigorous approximation guarantees. There are two reasons for this. First, approximate methods can effectively reduce the expressivity of an underlying model by making it impossible to choose parameters that reliably give good predictions. Second, approximations can respond to parameter changes in such a way that standard learning algorithms are misled. In contrast, we give two positive results in the form of learning bounds for the use of LP-relaxed inference in structured perceptron and empirical risk minimization settings. We argue that without understanding combinations of inference and learning, such as these, that are appropriately compatible, learning performance under approximate inference cannot be guaranteed.
Author Information
Alex Kulesza (Google)
Fernando Pereira (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Structured Learning with Approximate Inference »
Mon. Dec 3rd 06:30 -- 06:40 PM Room
More from the Same Authors
-
2020 Poster: Faithful Embeddings for Knowledge Base Queries »
Haitian Sun · Andrew Arnold · Tania Bedrax Weiss · Fernando Pereira · William Cohen -
2014 Poster: Expectation-Maximization for Learning Determinantal Point Processes »
Jennifer A Gillenwater · Alex Kulesza · Emily Fox · Ben Taskar -
2012 Poster: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Oral: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Spotlight: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Poster: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Group Sparse Coding »
Samy Bengio · Fernando Pereira · Yoram Singer · Dennis Strelow -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira