Automatic differentiation in ML

Where we are and where we should be going
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Key contributions

e Where are we?
o Acritical survey of implementation approaches to machine learning frameworks from a compiler,
programming language, system, and automatic differentiation perspective
e Where should we be going?
o Myiais a prototype of a machine learning framework which brings the best of multiple worlds



Two paradigms of ML frameworks

# Dataflow programming # Operator overloading
x = tf.placeholder(tf.float32) def f(x):
y = X * X return x * X
dx, = tf.gradients(y, x)
df = grad(f)
with tf.Session() as sess: dx = df(3)

dx_ = sess.run(
dx, feed_dict={x: 3})



Trade-offs

PyTorch, TF Eager,
Gluon

TensorFlow, Caffe2,
MXNet
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Best of both worlds
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- Runtime
— Python interpreter

+ Python
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+ Python

TensorFlow, Caffe2,
MXNet

Graph transformation
+ Ahead of time

+ Custom runtime

- API
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Program
transformation’

+ Ahead of time
+ Custom runtime
+ Python subset

+ Functional IR

+ Python subset

'To understand how our proposal differs from frameworks such as Tangent or TensorFlow for Swift, come see our poster!



Thank you!

Come talk to us at poster #94

See the code at github.com/mila-udem/myia



https://github.com/mila-udem/myia

