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Bayesian Optimization

• Goal: argmaxx∈D g(x)

• Bayesian perspective:
g ∼ GP(0, k) with
a stationary kernel k

• Metric: cumulative regret: RT =
∑T

t=1 g(xt)− g(x∗)
• Challenge: exploration vs. exploitation =⇒ Bayesian Optimization.
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Challenges of high dimensions

• Statistical

→ needs assumptions
Additive functions

• Computational
• Kernel inversion O(T3) → O(T logT)

• Optimization of the acquisition function → coordinate optimization
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Main tool: Quadrature Fourier Features (QFF)

k(x−y) Bochner
=

∫
Ω

p(ω)
(
cos(ω⊤x)
sin(ω⊤x)

)⊤(
cos(ω⊤y)
sin(ω⊤y)

)
dω

Fourier F.
≈ Φ(x)⊤ Φ(y)︸︷︷︸

Rm

• Standard approach Monte Carlo estimate - sample ω ∼ p(ω), (RFF)
• This work: Gaussian Quadrature.
• (generalized) additivity =⇒ favorable scaling with d̄,∥∥k(x, y)− Φ(x)⊤Φ(y)

∥∥
∞ = O

(
2d̄ρm

)
ρ < 1
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Algorithm

Main Contribution
First efficient and provably accurate high dimensional Bayesian
optimization using additive models.

• QFF are provably better than RFF for additive kernels
• High quality approximation and analytical form of posterior samples

from a GP.
• With additive model, the Thompson sampling acquisiton function

decomposes over the variable groups - one pass coordinate ascent.
• Thompson sampling with QFF for squared exponential kernel is

no-regret.

Please come to the poster #23.
Room 210 & 230 AB
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