Skip to yearly menu bar Skip to main content


Poster

Combinatorial Bandits with Relative Feedback

Aadirupa Saha · Aditya Gopalan

East Exhibition Hall B + C #18

Keywords: [ Algorithms -> Bandit Algorithms; Algorithms -> Ranking and Preference Learning; Theory ] [ Learning Theory ] [ Algorithms ] [ Online Learning ]


Abstract: We consider combinatorial online learning with subset choices when only relative feedback information from subsets is available, instead of bandit or semi-bandit feedback which is absolute. Specifically, we study two regret minimisation problems over subsets of a finite ground set $[n]$, with subset-wise relative preference information feedback according to the Multinomial logit choice model. In the first setting, the learner can play subsets of size bounded by a maximum size and receives top-$m$ rank-ordered feedback, while in the second setting the learner can play subsets of a fixed size $k$ with a full subset ranking observed as feedback. For both settings, we devise instance-dependent and order-optimal regret algorithms with regret $O(\frac{n}{m} \ln T)$ and $O(\frac{n}{k} \ln T)$, respectively. We derive fundamental limits on the regret performance of online learning with subset-wise preferences, proving the tightness of our regret guarantees. Our results also show the value of eliciting more general top-$m$ rank-ordered feedback over single winner feedback ($m=1$). Our theoretical results are corroborated with empirical evaluations.

Live content is unavailable. Log in and register to view live content