Skip to yearly menu bar Skip to main content


Poster

Variational Inference for Gaussian Process Models with Linear Complexity

Ching-An Cheng · Byron Boots

Pacific Ballroom #193

Keywords: [ Gaussian Processes ] [ Variational Inference ] [ Bayesian Nonparametrics ]


Abstract:

Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian process model that decouples the representation of mean and covariance functions in reproducing kernel Hilbert space. We show that this new parametrization generalizes previous models. Furthermore, it yields a variational inference problem that can be solved by stochastic gradient ascent with time and space complexity that is only linear in the number of mean function parameters, regardless of the choice of kernels, likelihoods, and inducing points. This strategy makes the adoption of large-scale expressive Gaussian process models possible. We run several experiments on regression tasks and show that this decoupled approach greatly outperforms previous sparse variational Gaussian process inference procedures.

Live content is unavailable. Log in and register to view live content