Skip to yearly menu bar Skip to main content


Poster

Learning to Optimize via Information-Directed Sampling

Daniel Russo · Benjamin Van Roy

Level 2, room 210D

Abstract:

We propose information-directed sampling -- a new algorithm for online optimization problems in which a decision-maker must balance between exploration and exploitation while learning from partial feedback. Each action is sampled in a manner that minimizes the ratio between the square of expected single-period regret and a measure of information gain: the mutual information between the optimal action and the next observation. We establish an expected regret bound for information-directed sampling that applies across a very general class of models and scales with the entropy of the optimal action distribution. For the widely studied Bernoulli and linear bandit models, we demonstrate simulation performance surpassing popular approaches, including upper confidence bound algorithms, Thompson sampling, and knowledge gradient. Further, we present simple analytic examples illustrating that information-directed sampling can dramatically outperform upper confidence bound algorithms and Thompson sampling due to the way it measures information gain.

Live content is unavailable. Log in and register to view live content