Skip to yearly menu bar Skip to main content


Poster

Minimax Optimal Algorithms for Unconstrained Linear Optimization

Brendan McMahan · Jacob D Abernethy

Harrah's Special Events Center, 2nd Floor

Abstract:

We design and analyze minimax-optimal algorithms for online linear optimization games where the player's choice is unconstrained. The player strives to minimize regret, the difference between his loss and the loss of a post-hoc benchmark strategy. The standard benchmark is the loss of the best strategy chosen from a bounded comparator set, whereas we consider a broad range of benchmark functions. We consider the problem as a sequential multi-stage zero-sum game, and we give a thorough analysis of the minimax behavior of the game, providing characterizations for the value of the game, as well as both the player's and the adversary's optimal strategy. We show how these objects can be computed efficiently under certain circumstances, and by selecting an appropriate benchmark, we construct a novel hedging strategy for an unconstrained betting game.

Live content is unavailable. Log in and register to view live content